Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Virol Methods ; 322: 114822, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729969

ABSTRACT

Porcine astroviruses (PAstV) are members of the family Astroviridae, Mamastravirus genus and have been identified to have five genotypes (PAstV1-5). These viruses are highly prevalent in pigs and can cause enteric disease as well as neurological or respiratory symptoms depending on their genotypes. At present, the epidemiological impacts of some PAstV genotypes on pigs are largely unknown and hence continuously monitoring of these PAstVs may be needed. The purpose of this research was to develop an improved and efficient detection tool for PAstVs and to evaluate the developed method using clinical samples. Initially, a set of five chimeric primers (CP), each comprising genotype specific primer pairs with an identical universal adapter at the 5' end, and a universal primer (UP) that is identical to universal adapter sequence, were designed. With these tools in place, a novel multiplex PCR system with universal primer was established for the simultaneous detection of the five types of PAstV. This method can specifically detect PAstV genotypes, with a limit of detection (LOD) of 5 copies/µL for each genotype irrespective of single or mixed target template. Using this new assay, 273 pig fecal samples were investigated for further assay evaluation. Among all samples, the positive rate was 70.0% with PAstV4 in 56.8% of the samples, PAstV2 in 38.8%, PAstV1 in 16.8%, and PAstV5 in 11.0%. More than one PAstV in a sample were detected in 39.2% of the samples. The consistency rate between the novel multiplex PCR and singleplex PCRs was 96.4-100%. Given its rapidity, specificity and sensitivity, the novel multiplex PCR is a useful approach for demonstrating single or mixed genotype infections of PAstV.


Subject(s)
Astroviridae Infections , Swine Diseases , Animals , Swine , Multiplex Polymerase Chain Reaction , Genotype , Swine Diseases/diagnosis , Sensitivity and Specificity
2.
Langmuir ; 39(26): 9230-9238, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37342894

ABSTRACT

Interfacial engineering is a critical pathway for modulating the self-assembled nanostructures of block copolymers (BCPs) during solvent exchange. Herein, we demonstrated the generation of different stacked lamellae of polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) nanostructures during solvent exchange by using phosphotungstic acid (PTA) or PTA/NaCl aqueous solution as the nonsolvent. The participation of PTA in the confined microphase separation of PS-b-P2VP in droplets increases the volume fraction of P2VP and decreases the tension at the oil/water interface. Moreover, the addition of NaCl to the PTA solution can further increase the surface coverage of P2VP/PTA on droplets. All factors impact the morphology of assembled BCP nanostructures. In the presence of PTA, ellipsoidal particles composed of alternatively stacked lamellae of PS and P2VP were formed (named BP), whereas, in the coexistence of PTA and NaCl, they changed to stacked disks with PS-core-P2VP-shell (called BPN). The different structures of assembled particles induce their different stabilities in solvents and different dissociation conditions as well. The dissociation of BP particles was easy because PS chains were only entangled together which can be swollen in toluene or chloroform. However, the dissociation of BPN was hard, requiring an organic base in hot ethanol. The structural difference in BP and BPN particles further extended to their dissociated disks, which makes the cargo (like R6G) loaded on these disks to show a different stability in acetone. This study demonstrated that a subtle structural change can greatly affect their properties.

3.
ACS Nano ; 17(6): 6036-6044, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36920037

ABSTRACT

Directional liquid transport is expected via adjusting chemical components, surface morphology, and external stimuli and is critical for practical applications. Although many studies have been conducted, there are still challenges to achieving real-time transformation of liquid transport direction on the material surface. Herein, we demonstrate a strategy to achieve curvature responsive anisotropic wetting on the elastic film with V-shaped prism microarray (VPM) microstructure, which can be used to control the direction of liquid transport. The results reveal that the curvature change of an elastic film can adjust the arrangement of V-shaped prisms on the elastic film. Correspondingly, the liquid wetting trend will change and even the moving direction reverses with varying arrangements of the V-shaped prisms on the elastic film. Meanwhile, surface hydrophobicity of the VPM elastic film also affects the liquid wetting trend and even shows the opposite transport direction of the liquid, which is up to the water wetting state on the VPM elastic film. Based on these results, the VPM elastic film can serve as a valve to control the liquid transport direction and is promising in the application of liquid directional harvest, chemical reaction, microfluidic, etc.

4.
Environ Sci Pollut Res Int ; 30(17): 49632-49643, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780077

ABSTRACT

In this study, the Ce-modified tea residue biochar (Ce-TBC) was successfully generated and applied to the biochar/persulfate system (Ce-TBC/PDS), the mechanism of the removal of tetracycline (TC) using Ce-TBC/PDS was elaborated. Under the optimal experimental conditions (Ce-TBC = 0.8 g L-1, PDS = 4 mM, TC = 10 mg L-1), the removal efficiency of TC was 91.28%, and after 5 cycles, the elimination rate of Ce-TBC/PDS still reached up to 80%. The mechanism of TC removal by Ce-TBC/PDS was analyzed by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier infrared transform spectrometer (FT-IR), and X-ray photoelectron spectrometer (XPS) characterization, and influence factor experiments. The results showed that the introduction of CeOx increased the oxygen vacancies on the TBC surface and promoted the interconversion between Ce3+ and Ce4+ for better activation of PDS and generation of active species. Free radical quenching experiments and paramagnetic resonance spectrometry (EPR) analysis showed that the non-radical pathway 1O2 played a dominant role in the Ce-TBC/PDS system. The present work provided an efficient means of PDS activator and recycling of tea waste.


Subject(s)
Water Pollutants, Chemical , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Tetracycline/analysis , Anti-Bacterial Agents/analysis , Charcoal/chemistry , Tea
5.
J Vet Diagn Invest ; 35(2): 132-138, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36573660

ABSTRACT

Porcine astrovirus (PAstV) has been associated experimentally with diarrhea in piglets, but much more knowledge is needed about this virus. PAstV has high genetic variability, and 5 genotypes have been identified, namely PAstV1-5. To obtain information on the epidemiology of PAstV, we established a multiplex PAstV PCR assay to detect and differentiate the 5 PAstV genotypes simultaneously. The assay utilized specific primers for each genotype, producing fragments of 307, 353, 205, 253, and 467 bp, representing PAstV1-5, respectively. Our multiplex PCR assay amplified all 5 DNA fragments from single or mixed viral genomes without cross-reactions with other PAstV genotypes or other viruses in pigs. The limit of detection of the multiplex PCR assay was 5 × 102 copies/µL for PAstV1 and PAstV4, and 5 × 103 copies/µL for PAstV2, PAstV3, and PAstV5. We examined 76 pig fecal specimens with our multiplex PCR assay. PAstV was detected in 36 of 76 (47.4%) samples; ≥2 PAstVs were found in 20 of 76 (26.3%) samples. The multiplex PCR assay results were essentially the same as the results using a monoplex PAstV PCR assay, with a coincidence rate of >96%. Our multiplex PCR method provides a simple, sensitive, and specific detection tool for PAstV detection and epidemiologic surveys.


Subject(s)
Astroviridae Infections , Swine Diseases , Animals , Swine , Astroviridae Infections/diagnosis , Astroviridae Infections/epidemiology , Astroviridae Infections/veterinary , Multiplex Polymerase Chain Reaction/veterinary , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Genotype , Sensitivity and Specificity
6.
Environ Sci Pollut Res Int ; 30(8): 21104-21114, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36264459

ABSTRACT

Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Animals , Plastics/toxicity , Plastics/chemistry , Microplastics/toxicity , Zebrafish , Phthalic Acids/chemistry , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 317: 120832, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36493581

ABSTRACT

The environmental pollution caused by atrazine in the agricultural production cannot be ignored. In this study, the fallen leaf biochar (LBC) was prepared at three different temperatures (500 °C, 600 °C, and 700 °C) using a simple pyrolysis method (500 LBC, 600 LBC, and 700 LBC) for atrazine adsorption. Batch experiments showed that the performance of LBC in atrazine adsorption improved with rising pyrolysis temperature, and the highest adsorption amount of 700 LBC reached 84.32 mg g-1. Kinetic and isotherm models showed that the adsorption behaviors were both monolayer and multilayer chemisorption. The findings of the characterizations (Elemental analysis, BET, XRD, Raman, FT-IR, and XPS) confirmed that the degree of aromatization determined the adsorption capacity of LBC to atrazine, and π-π electron donor-acceptor interaction was the main adsorption mechanism. Density functional theory (DFT) calculations showed that the highly aromatized biochar was more effective for atrazine adsorption, manifested as smaller molecular distances, higher adsorption energies, more stable complex structures, and stronger π-electron conjugation. In the column adsorption experiments, reducing the inlet flow rate or increasing the bed height extended the breakthrough time and exhaustion time of the breakthrough curves, and 700 LBC still showed good adsorption performance after five cycles. Overall, fallen leaf biochar as a reuse product of resource showed good potential for application in atrazine adsorption, which can be used for atrazine-contaminated water remediation.


Subject(s)
Atrazine , Water Pollutants, Chemical , Atrazine/analysis , Temperature , Adsorption , Pyrolysis , Density Functional Theory , Spectroscopy, Fourier Transform Infrared , Charcoal/chemistry , Kinetics , Water Pollutants, Chemical/analysis
8.
Environ Sci Pollut Res Int ; 30(7): 18285-18295, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36208375

ABSTRACT

Titanium xerogel coagulant (TXC) is a new type of coagulant that has attracted much attention in recent years. However, the tetracycline removal performance of TXC was not satisfactory because low isoelectric point (pHiep) inhibited the electrical neutralization efficiency of TXC in an alkaline environment. To overcome this shortcoming, a composite xerogel coagulant (titanium-aluminum xerogel composite coagulant) was prepared. The removal of tetracycline and turbidity was used as evaluation indexes. It was proved that the combination of aluminum (III) and titanium (IV) enhanced the resistance of TXC to pH. The synthesized titanium-aluminum xerogel composite coagulant (TXAC) has an excellent removal ability of tetracycline in a wide pH range (pH = 5-10). At pH 8.8, the dosage required to remove 80% tetracycline from water decreased from 93 (TXC) to 35 mg/L (TXAC). The reason for this improvement could be attributed to (i) aluminum (III) enhanced the electric neutralization of TXC to negatively charged pollutants in an alkaline environment; (ii) the complexing ability of organic matter and aluminum (III) was enhanced. This work provides a feasible scheme for the pretreatment of tetracycline in water to meet the pretreatment requirements of special water.


Subject(s)
Aluminum , Water Purification , Titanium , Water , Flocculation , Tetracycline , Anti-Bacterial Agents
9.
Inorg Chem ; 61(49): 20008-20025, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36426422

ABSTRACT

The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Rhodium , Ruthenium , Humans , Iridium/pharmacology , Iridium/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Rhodium/pharmacology , Rhodium/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry , Models, Molecular , Imines/chemistry , Cell Line, Tumor
10.
ACS Nano ; 16(10): 16843-16852, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36222751

ABSTRACT

Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.

11.
Water Sci Technol ; 86(7): 1821-1834, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36240314

ABSTRACT

In this study, to simultaneously dispose of sludge and wastewater containing heavy metals, sludge biochar loaded with nano zero-valent-iron (nZVI) was prepared at 700 °C (nBC700) to remove Cr(VI) and Cu(II). The results showed the removal capacity of biochar was greatly improved by loading nZVI, and the adsorption capacities of biochar for Cu(II) and Cr(VI) increased by 251.96% and 205.18%. Pseudo-second-order kinetic and Sips isotherm models were fitted to the removal processes. Intraparticle diffusion models showed the removal process was controlled by surface diffusion and intraparticle diffusion. Competitive experiments showed Cr(VI) can compete with Cu(II) for active sites, but Cr(VI) was more easily removed by nBC700 through cation bridge. The removal mechanism illustrated removing Cu(II) mainly depended on complex precipitation, followed by reduction reaction, while Cr(VI) was on the contrary. This work provided effective data for sludge disposal and heavy metal removal.


Subject(s)
Carbonated Water , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Chromium/chemistry , Deuterium Oxide , Iron/chemistry , Sewage , Steam , Wastewater , Water/chemistry , Water Pollutants, Chemical/chemistry
12.
Langmuir ; 38(41): 12441-12449, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36196878

ABSTRACT

The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD-TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD-TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.

13.
Nanoscale Adv ; 4(17): 3495-3503, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36134360

ABSTRACT

The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.

14.
Chemosphere ; 307(Pt 2): 135811, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35931263

ABSTRACT

In this study, a variety of boron nitride (BN) modified BiVO4 (BN-BiVO4) composites with visible-light response were prepared and used to degrade tetracyclines (TCs), including tetracycline (TC) and oxytetracycline (OTC). When treating the TCs solution under visible light irradiation, 4BN-BiVO4 displayed high photocatalytic performance (87.1% for TC and 86.2% for OTC), which were 3.6 and 2.3 times than that of BiVO4, respectively. Photoluminescence spectroscopy (PL) and transient photocurrent proved that the combination of BN and BiVO4 effectively promotes the efficient separation of photogenerated electrons and holes in the material, resulting in enhanced photocatalytic activity. Further, radical trapping experiments in combination with electron spin resonance (ESR) revealed that ·OH radicals and holes were the predominant reactive species. Ultimately, the possible photocatalytic mechanism for TCs degradation was proposed on the basis of the experiments and characterization analysis. This study offers a new promising approach for the design of photocatalysts with visible-light response for efficient TCs elimination.


Subject(s)
Graphite , Oxytetracycline , Anti-Bacterial Agents/chemistry , Bismuth/chemistry , Boron Compounds , Catalysis , Graphite/chemistry , Light , Photolysis , Tetracycline , Tetracyclines , Vanadates/chemistry
15.
Inorg Chem ; 61(26): 10051-10065, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35735792

ABSTRACT

Herein, we present the different coordination modes of half-sandwich iridium(III) and rhodium(III) complexes based on pyridine-amine ligands. The pyridyl-amine iridium(III) and rhodium(III) complexes, the corresponding oxidation pyridyl-imine products, and 16-electron pyridyl-amido complexes can be obtained through the change in reaction conditions (nitrogen/adventitious oxygen atmosphere, reaction time, and solvents) and structural variations in the metal and ligand. Overall, the reaction of pyridine-amine ligands with [(η5-C5(CH3)5)MCl2]2 (M = Ir or Rh) in the presence of adventitious oxygen afforded the oxidized pyridyl-imine complexes. The possible mechanism for the oxidation of iridium(III) and rhodium(III) amine complexes was confirmed by the detection of the byproduct hydrogen peroxide. Moreover, the formation of pyridyl-amine complexes was favored when nonpolar solvent CH2Cl2 was used instead of CH3OH. The rarely reported complex with [(η5-Cp*)IrCl3] anions can also be obtained without the addition of NH4PF6. The introduction of the sterically bulky i-Bu group on the bridge carbon of the ligand led to the formation of stable 16-electron pyridyl-amido complexes. The pyridyl-amine iridium(III) and rhodium(III) complexes were also synthesized under a N2 atmosphere, and no H2O2 was detected in the whole process. In particular, the aqueous solution stability and in vitro cytotoxicity toward A549 and HeLa human cancer cells of these complexes were also evaluated. No obvious selectivity was observed for cancer cells versus normal cells with these complexes. Notably, the represented complex 5a can promote an increase in the reactive oxygen species level and induce cell death via apoptosis.


Subject(s)
Iridium , Rhodium , Amines , Humans , Imines , Iridium/chemistry , Ligands , Oxygen , Pyridines/chemistry , Rhodium/chemistry
16.
ACS Omega ; 7(12): 10580-10587, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382279

ABSTRACT

Block copolymer (BCP) vesicles loaded with drug molecules may have a nonidentical swelling behavior due to the strong interactions between BCP vesicles and loaded molecules. A thermodynamic study of the swelling for such a system is of great importance in clarifying their pH-gated drug delivery behavior. In this study, the selective swelling of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) vesicles in the presence of different acids was compared using dynamic light scattering, zeta-potential, and isothermal titration calorimetry (ITC) measurements. Transmission electron microscopy observation verified that these PS-b-P2VP vesicles were mainly multilamellar. Importantly, using the ITC measurement, we first compared the thermodynamic parameters, including ΔH, ΔG, and ΔS, association binding sites (N), and binding association constants (K a) in the selective swelling of the PS-b-P2VP vesicles in low pH (pH ∼3.5), with or without a hydrogen bonding interaction. We observed that the existence of a hydrogen bonding interaction between tartaric acid/malic acid and PS-b-P2VP generates a limitation to the selective swelling of PS-b-P2VP vesicles, in which conditions will depend on the molecular structures of the organic acids and PS-b-P2VP. This work first provides a quantitative insight on the swelling of BCP vesicles in the presence of hydrogen bonding and highlights the power of ITC measurements for investigating the structural transformation of polymer nanostructures.

17.
Environ Sci Pollut Res Int ; 29(36): 55069-55080, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35312921

ABSTRACT

The emerging porous material metal organic framework (MOFs) has caught researchers' attention in the field of photocatalysis. In this study, a visible light-driven carbon nanodots/MIL-100(Fe) photocatalytic material was prepared by in situ synthesis method. The study found that the composite material loaded with 2.5 mg C-dots (2.5-carbon nanodots/MIL-100(Fe)) showed the best tetracycline degradation efficiency with 4.2 times higher than that of MIL-100(Fe) materials in a neutral environment. The superiority of 2.5-carbon nanodots/MIL-100(Fe) in degrading tetracycline is attributed to the fact that C-dots have the ability to act as acceptors and donors of electrons, thus promoting electron transfer and inhibiting electron-hole recombination. Moreover, the 2.5-carbon nanodots/MIL-100(Fe) also showed high stability after five cycles of the photodegradation reaction. The quenching experiment proved that the main active substances that degrade tetracycline were O2- and h+. The study of carbon nanodots /MIL-100(Fe) composite materials provides new thoughts and methods for the removal of organic pollutants.


Subject(s)
Carbon , Metal-Organic Frameworks , Anti-Bacterial Agents , Light , Tetracycline
18.
Mater Horiz ; 9(2): 780-790, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34901984

ABSTRACT

Controllable liquid transportation through a smart porous membrane is realized by manipulating the surface wetting properties and external stimuli, and has been intensively studied. However, the liquid transportation, e.g., permeation and moving process, at the interface is generally uninterrupted, i.e., the opening and closing of the interface is irreversible. Herein, we present a new strategy to achieve magnetic adaptive switchable surfaces, i.e., liquid-infused micro-nanostructured porous composite film surfaces, for controllable liquid transportation, via modulation of the magnetic field. The liquid transportation process can be interrupted and restarted on the porous composite film because its pore structure can be quickly closed and opened owing to the adaptive morphological transformation of the magnetic liquid with a varying magnetic field. That is, the liquid permeation process occurs due to the open pore structure of the composite film when the external magnetic field is added, while the permeation process can be interrupted owing to the self-repairing closure of the pore when the magnetic field is removed, and the moving process can be achieved. Thus a magnetic field induced switchable porous composite film can serve as a valve to control liquid permeation based transportation, which opens new avenues for artificial liquid gating devices for flow, smart separation, and droplet microfluidics.

19.
Chemosphere ; 289: 133230, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890611

ABSTRACT

A series of 0D boron carbon nitride quantum dots (BCNQDs) modified 2D Bi4O5I2 (0D/2D Bi4O5I2/BCNQDs) composites were synthesized and applied to photodegradation of tetracyclines (TCs), including tetracycline (TC) and oxytetracycline (OTC). The Bi4O5I2/BCNQDs (1) (1 mL BCNQDs) composite exhibits the highest photocatalytic performance for TCs degradation. The degradation rate constants of TC and OTC by the optimal sample were 4.95 and 2.17 times that of Bi4O5I2, respectively. This can be attributed to the fact that the narrow bandgap Bi4O5I2 is the electron acceptor, and the oxygen-containing functional group with the negative charge on BCNQDs can promote the formation of photoexcited holes, which makes the effective separation of photoexcited carriers easier. Furthermore, the active substance (h+ and ·O2-) is the major active substance for TCs photodegradation. On this basis, the possible photocatalytic reaction mechanism of Bi4O5I2/BCNQDs (1) composite is proposed. This study provides a new idea for 0D/2D interface engineering of BCNQDs heterojunction.


Subject(s)
Quantum Dots , Boron , Catalysis , Nitriles , Photolysis , Tetracyclines
20.
J Environ Sci (China) ; 111: 93-103, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949377

ABSTRACT

Nonylphenol (NP) residues, as a typical endocrine disrupting chemical (EDC), frequently exist in sewage, surface water, groundwater and even drinking water, which poses a serious threat to human health due to its bioaccumulation. In order to remove NP, a series of MIL-100(Fe)/ZnFe2O4/flake-like porous carbon nitride (MIL/ZC) was synthesized through in-situ synthesis at room temperature. High performance of ternary MIL/ZC is used to degrade NP under visible light irradiation. The results show that 30MIL/ZC2 (20 wt.% ZnFe2O4) ternary composite had the best photocatalytic activity (99.84%) when the dosage was 30 mg. Further mechanism analysis shows that the excellent photocatalytic activity of 30MIL/ZC2 could be ascribed to the double charge transfer process between flake-like porous carbon nitride (PCN) and other catalysts in the ternary heterojunction, and the separation of photogenerated electron-hole pairs was more effective. In addition, the 30MIL/ZC2 also showed high stability after five cycles of the photodegradation reaction. Furthermore, the active substance (•O2-) was considered to be the main active substance in the NP degradation process. Based on the research results, the possible photocatalytic reaction mechanism of 30MIL/ZC2 ternary composite was proposed and discussed in detail.


Subject(s)
Light , Nitriles , Phenols , Photolysis , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...